Energy efficiency of multi-standard mobile devices in Heterogeneous Wireless Networks

Jacek Kibiłda

Wrocławskie Centrum Badań EIT+, Trinity College Dublin

December 13, 2012
Outline

Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
The big picture

- Mobile data traffic has grown 6x between 2008 and 2010 for most of the regions world-wide. Cisco predicts further increase by 18x between 2011 and 2016.
- In December 2011 there were more than 1 million apps, available in Apple store (745 new apps per day), and Google Play (543 apps per day).
- In 2012 there were around 845 million Facebook users, of which approx. 50% login daily.
- Mobile devices are equipped with multiple radio interfaces: GSM, UMTS, LTE, WLAN, Bluetooth, GPS, ...
- Mobile devices are equipped with: HD cameras, touch screens, large LCDs, torches (!?), ...
- Mobile devices are equipped with quad-core processors, clocked at over 1 GHz
Laws driving mobile technology growth

- **Moore’s Law** - processor performance doubles every 18 months!
- **Cooper’s Law** - wireless capacity doubles every 30 months!

But:
- Battery capacity has increased only by 80% over the last decade,
Battery operational time for smartphones

Smartphones are well-designed to handle idle state during which they can survive even several days on a single battery charging, however, they can stay permanently active for few hours only.

<table>
<thead>
<tr>
<th></th>
<th>iPhone 3G(^1)</th>
<th>Nokia N96(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>300h</td>
<td>230h</td>
</tr>
<tr>
<td>Active</td>
<td>5h</td>
<td>4h</td>
</tr>
</tbody>
</table>

\(^1\)3G/UMTS
\(^2\)2G/GSM
Light-weight design vs. battery size

Figure: Evolution of iPhone’s battery capacity, and weight.
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
Power consumption of a mobile device

\[P_{tot} = \sum_{n=1}^{N} P_{nIC}^n + P_{CPU} + P_{GR} + P_{DISP} + P_{OTHER} \]

- \(P_{tot} \) - total power consumption of a mobile device
- \(N \) - number of radio interfaces
- \(P_{nIC}^n \) - power consumption of an n-th radio interface
- \(P_{CPU} \) - power consumption of a CPU unit and RAM unit
- \(P_{GR} \) - power consumption of a graphics unit
- \(P_{DISP} \) - power consumption of a display unit, including backlight
- \(P_{OTHER} \) - other components, e.g. flash memory, SD card
Some example power consumption measurements

Overall power consumption measurement [Caroll and Heiser]:

Figure: Idle state power consumption: a) suspended mode (68 mW), b) idle mode (268 mW).

Figure: Active state power consumption: a) video playback (543 mW), b) GSM phone call (1054 mW).
Some example power consumption measurements II

Power consumption measurements for GSM and UMTS [Perrucci et al]:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>GSM</th>
<th>UMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving a voice call</td>
<td>612.7</td>
<td>1224.3</td>
</tr>
<tr>
<td>Making a voice call</td>
<td>683.6</td>
<td>1265.7</td>
</tr>
<tr>
<td>Idle mode</td>
<td>15.1</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Figure: Energy consumed for transmission of 200 bytes for GSM and UMTS.
Power consumption measurements for WLAN [Pedersen et al] :

<table>
<thead>
<tr>
<th>State</th>
<th>Power value [W]</th>
<th>Data rate [Mbps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending (d=3m)</td>
<td>1.645</td>
<td>4.781</td>
</tr>
<tr>
<td>Sending (d=30m)</td>
<td>1.674</td>
<td>2.387</td>
</tr>
<tr>
<td>Receiving (d=3m)</td>
<td>1.449</td>
<td>4.745</td>
</tr>
<tr>
<td>Receiving (d=30m)</td>
<td>1.329</td>
<td>2.392</td>
</tr>
<tr>
<td>Idle mode</td>
<td>1.027</td>
<td>-</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>0.04</td>
<td>-</td>
</tr>
</tbody>
</table>

Power consumption measurements for LTE dongle [Jensen et al]:

<table>
<thead>
<tr>
<th>State</th>
<th>Power value [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink (50 PRB, tx power = -10dBm)</td>
<td>1.91</td>
</tr>
<tr>
<td>Uplink (50 PRB, tx power = 15dBm)</td>
<td>3.00</td>
</tr>
<tr>
<td>Downlink (rx power = -40dBm)</td>
<td>1.98</td>
</tr>
<tr>
<td>Downlink (rx power = -80dBm)</td>
<td>2.02</td>
</tr>
</tbody>
</table>
Introduction

Power consumption considerations

The C2POWER approach
General

Cooperative communications
Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
C2POWER expects to **design methods that will increase energy efficiency of wireless communications systems** based on multi-standard mobile devices. C2POWER makes use of the two complementary techniques:

- **Cooperative wireless communications** between mobile devices using low-power short-range interfaces.

- **Cognitive handover mechanisms** to select the RAT, which offers the best energy efficiency while providing the required quality of service.
C2POWER scenarios

Figure: C2POWER scenarios: a) cooperative communications in homogeneous network, b) cooperative communications in heterogeneous network, c) vertical handovers.
C2POWER architecture

Figure: C2POWER architectural framework.
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
Energy inefficiency of WiFi MAC protocol I

The scenario:

Figure: WiFi dual-link congestion scenario.
CSMA/CA protocol basics:

Figure: CSMA/CA protocol.
Self-enforced cooperative relaying MAC protocol for WiFi

Figure: SECR-MAC protocol.

Figure: Relay-contention window.
Self-enforced cooperative relaying MAC protocol for WiFi - results I

Figure: Energy efficiency for a scenario with a direct path of 1 Mbps and with a relay link of: a) 11-11 Mbps, b) 5.5-5.5 Mbps.
Self-enforced cooperative relaying MAC protocol for WiFi - results II

Figure: Energy efficiency for a scenario with a direct path of 1 Mbps and with a relay link of: a) 5.5-2 Mbps, b) 1-1 Mbps.
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
C2POWER framework

Steps to perform energy efficient vertical handover:

1. **Discover** available networks in the vicinity, e.g. by network scanning
2. **Extract** context information, e.g. measured power consumption, data rate
3. **Estimate** energy consumption of each available access network, and **select** the least energy consuming one
4. **Execute** handover, i.e. connect to the network of choice, and gracefully disconnect with the previously selected network
Simplified energy consumption model of a radio interface

In a mobile device the radio interface energy consumption can be calculated:

\[E_i = T_{Tx} P_{Tx} + T_{Rx} P_{Rx} + (T_c - T_{Tx} - T_{Rx}) P_{idle} \quad i \in N \]

\[T_{Tx/Rx} = \begin{cases} \frac{L}{R_{uplink}} & \text{if traffic is variable bit rate} \\ \frac{L^*}{R_{uplink}} & \text{if traffic is constant bit rate} \end{cases} \]

- \(P_{Tx/Rx/Idle} \) - measured device’s power consumption in transmission, reception and idle states
- \(T_{Tx/Rx} \) - transmission/reception time
- \(L \) - transmission size in bits
- \(L^* = D T_c \) - transmission size in bits for constant rate traffic, corresponds to the application rate times the connection duration
- \(R_{uplink/downlink} \) - idle power consumption of a radio interface
Figure: Energy consumption bounds for 3G and 802.11n case: a) 3G only, b) WiFi only, c) VHO random decision, d) VHO decision mismatch, e) VHO exact decision.
Energy consumption metric I

After some reformulations:

$$\bigwedge_{i \in N} E_i = \frac{D}{R_{\text{uplink/downlink}}} \left(P_{i\text{Tx}}^i - P_{i\text{idle}}^i \right) + P_{i\text{idle}}^i$$

where:

- N - is the number of available access networks

The network selection criterion:

$$\arg \min_{i \in N} (E_i)$$
Handover decision as an MDP

However, we may look at the vertical handover decision making process from the perspective of a certain time horizon. We can formulate this process as a Markov Decision Process (MDP).

Figure: An example of MDP model for vertical handover decision making.
Energy consumption metric with MDP

Markovian rules are of the form:

$$\delta_t : X_t \rightarrow K_t(x_t)$$

A set of rules forms a policy:

$$\pi_i = \delta_1, \delta_2, \ldots, \delta_n, i \in (N \times n), n \in (1, \infty)$$

Utility coming from each policy π_i can be described in terms of total expected reward:

$$\vartheta^{\pi_i} = E^{\pi_i} \{ E_n[\rho(n)r_n(X_t)] + \sum_{t=1}^{n-1} \rho(n)r_t(X_t, K_t) \}$$

Our goal is to find a policy that will maximize the total expected reward:

$$\pi^* = \arg \max_{i \in N} \{ \vartheta^{\pi_1}, \ldots, \vartheta^{\pi_N} \}$$
Energy consumption metric II

Reward:
\[r(x_t, k_t) = -(e(x_t, k_t) + g(x_t, k_t)) \]

Action cost:
\[g(x_t, k_t) = \begin{cases}
0 & x_t = x_{t+1} \\
e_{ho} & x_t \neq x_{t+1}
\end{cases} \]

Transition probability:
\[P(x_{t+1}^* | x_t, k_t) = \begin{cases}
0 & x_{t+1}^* = k_t \\
p_{x_{t+1}, x_t} & x_{t+1}^* \neq k_t
\end{cases} \]

Discount factor:
\[\rho(n) = (1 - \delta)\delta^{n-1}, \quad n = 1, 2, ... \]
Energy consumption metric II cont.

For geometrically distributed connections (with mean connection duration δ):

$$\vartheta^{\pi_i} = E^{\pi_i}\left\{ \sum_{n=1}^{\infty} \sum_{t=1}^{n} r_t(X_t, K_t)(1 - \delta)\delta^{n-1} \right\}$$

After some transformations:

$$\vartheta^{\pi_i} = E^{\pi_i}\left\{ \sum_{t=1}^{\infty} \delta^{n-1} r_t(X_t, K_t) \right\}$$

Finally, the network of choice is the one that:

$$\pi^* = \arg \max_{k_t \in K} \left\{ r_t(x_t, k_t) + \delta \sum_{x_{t+1} \in X} P[x_{t+1}^*|x_t, k_t] \vartheta(x_{t+1}^*) \right\}$$
Simulation scenario

Figure: WiMAX-WLAN single user simulation scenario.

<table>
<thead>
<tr>
<th>Traffic profile</th>
<th>Main characteristics</th>
<th>Distributions</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP</td>
<td>call duration</td>
<td>exponential</td>
<td>bidirectional</td>
</tr>
<tr>
<td>VoD</td>
<td>session duration</td>
<td>exponential</td>
<td>unidirectional</td>
</tr>
<tr>
<td>FTP</td>
<td>file size, reading time</td>
<td>truncated lognormal, exponential</td>
<td>unidirectional with ACK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Transmission state [mW]</th>
<th>Reception state [mW]</th>
<th>Sleep state [mW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiMAX</td>
<td>1500</td>
<td>1500</td>
<td>25</td>
</tr>
<tr>
<td>WLAN 802.11a</td>
<td>1920</td>
<td>1400</td>
<td>75</td>
</tr>
</tbody>
</table>
Simulation results I

(a) VoD traffic; gains 32-52%.

(b) FTP traffic; gains 32-34%.

Figure: Energy efficiency for two traffic types VoD and FTP.
Simulations results II

Figure: Energy efficiency for VoIP traffic; gains 0%.
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
Various techniques for saving energy

- **Application layer:**
 - Aggregation - aggregation of database queries, peer-2-peer status information exchange
 - Load partitioning - passing of processing load to BS units
 - Network-supported access network discovery, e.g. ANDSF\(^3\)

- **Transport layer:**
 - Aggregate or minimize retransmissions
 - Decrease backoff

- **Network layer:**
 - Energy efficient network selection, e.g. energy efficient handovers

- **MAC:**
 - Idle state management
 - Discontinuous reception mechanism
 - Cooperative communication, e.g. cooperative relay

- **PHY:**
 - Uplink power control mechanisms
 - More efficient waveform design (possibly adaptive), e.g. OFDM adjacent channel leakage and high PAPR
 - Techniques that increase SINR: MIMO, beamforming, network coding, etc.

\(^3\) It can be perceived as an improvement to MAC.
Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
References

Introduction

Power consumption considerations

The C2POWER approach
 General
 Cooperative communications
 Vertical handovers

Demonstrations

Some energy saving techniques

References

Acknowledgement
Acknowledgement

The research leading to these results has received funding from the European Community’s 7th Framework Programme [FP7/2007-2013] under grant agreement 248577 [C2POWER]. The seminar was partially supported by the European Cooperation in Science and Technology (COST), Action IC0902 ”Cognitive Radio and Networking for Cooperative Coexistence of Heterogeneous Wireless Networks”.