A Reconfigurable Linear Feedback Shift Register for Software Defined Radio Terminal

Author: Laurent Alaus
Co-Author: Dr Dominique Noguet
Co-Author: Pr Jacques Palicot
A Reconfigurable Linear Feedback Shift Register for Software Defined Radio Terminal

Summary:

I. Framework: Techniques of Parameterization and Common Operators (CO)
 1. Ideas of Reconfigurability
 2. Techniques of Parameterization

II. The Reconfigurable Linear Feedback Shift Register
 1. Design
 2. Parameterization
 3. Implementation
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)
 1. Reconfigurability: Velcro Method – First Steps of SDR

 Principle: Coexistence of all the required standards implementations
 Switch to select the one required

Standard 1:

- Emission Chain – Standard 1
- Channel
- Reception Chain – Standard 1

Standard 2:

- Emission Chain – Standard 2
- Channel
- Reception Chain – Standard 2
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurablility: Velcro Method – First Steps of SDR

 Principle: Coexistence of all the required standards implementations
 Switch to select the one required

Standard 1:

CTC → Modulation BPSK → IFFT64 → Channel → FFT64 → Demodulation BPSK

Standard 2:

Turbo Coder → Modulation QPSK → IFFT128 → Channel → FFT128 → Demodulation QPSK
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurablility: Velcro Method – First Steps of SDR

 Principle: Coexistence of all the required standards implementations
 Switch to select the one required

Standard 1 and Standard 2:
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability: Sharing of Functions

 Principle: Specific Reconfigurable General Functions

Standard 1:

CTC → Modulation
BPSK → IFFT64 → Channel

Standard 2:

Turbo
Coder
→ Modulation
QPSK → IFFT128 → Channel

FFT128 → Demodulation
QPSK

FFT64 → Demodulation
BPSK
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability: Sharing of Functions

 Principle: Specific Reconfigurable General Functions

Standard 1:
CTC → Modulation (BPSK) → IFFT64 → Channel → FFT64 → Demodulation (BPSK)

Standard 2:
Turbo Coder → Modulation (QPSK) → IFFT128 → Channel → FFT128 → Demodulation (QPSK)
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability.
2. Techniques of Parameterization: Parameterizable Functions

Standard 1:

- FEC: CTC
- Modulation: BPSK
- IFFT: 64
- Channel
- FFT: 64
- Demodulation: BPSK

Parameters Downloading:

- Turbo Coder
- Modulation: QPSK
- IFFT: 128
- Channel
- FFT: 128
- Demodulation: QPSK
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability.
2. Techniques of Parameterization: Parameterizable Functions
A Reconfigurable LFSR for SDR Terminal.

I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurablility.
2. Techniques of Parameterization: Common Operators

Parameters Downloading

Common Operator 1
Common Operator 2
Common Operator 3
A Reconfigurable LFSR for SDR Terminal.

II. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability.
2. Techniques of Parameterization: Common Operators

<table>
<thead>
<tr>
<th>Function 1</th>
<th>Function 2</th>
<th>Function 3</th>
<th>Function 4</th>
<th>Function 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Common Operator 1</td>
<td>Common Operator 2</td>
<td>Common Operator 3</td>
<td>Channel</td>
</tr>
<tr>
<td>Common Operator 4</td>
<td>Common Operator 1</td>
<td>Common Operator 2</td>
<td>Common Operator 3</td>
<td>Common Operator 4</td>
</tr>
</tbody>
</table>

A common operator is a HW parameterizable architecture. It carries out several operations of distinct functions of different standards, could be used on different time in the same chain at the same time.
I. Framework: Techniques of Parameterization and Common Operators (CO)

1. Reconfigurability.
2. Techniques of Parameterization: Common Operators

Standard 1:

Common Operator 2 → Common Operator 3 → Common Operator 2 → Channel → Common Operator 1 → Common Operator 3

Standard 2:

Common Operator 1 → Common Operator 2 → Common Operator 3 → Channel → Common Operator 1 → Common Operator 2

A common operator

is an HW parameterizable architecture.

carries out several operations of distinct functions of different standards.

could be used on different time in the same chain at the same time.
II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition

 • Schematic: R-LFSR General Architecture – Transpose IIR Filter

 $$y_n = \sum_{k=0}^{N} b_{N-k} \cdot x_{n-k} - \sum_{k=1}^{N} a_{N-k} \cdot y_{n-k}$$

 • Equation:
II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition

 - Equation: \[y_n = \sum_{k=0}^{N-1} b_{N-k} x_{n-k} - \sum_{k=1}^{N} a_{N-k} y_{n-k} \]
II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition

- **Schematic:** R-LFSR General Architecture – FIR Filter

\[
y_n = \sum_{k=0}^{N} b_{N-k} \cdot x_{n-k} - \sum_{k=1}^{N} a_{N-k} \cdot y_{n-k}
\]
A Reconfigurable **LFSR** for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition.
2. Design & Fulfilled Structures:

 - Pseudo Random Sequences Generator
 - Scrambler
 - Non Systematic Convolutional Coder
 - Recursive Systematic Convolutional Coder
 - Cyclic Redundancy Check Coder
 - Cyclic Redundancy Check Decoder
 - Error-Correcting Cyclic Coder
 - Error-Correcting Cyclic Decoder
 - Galois Field Generator
 - Reed Solomon Coder/Decoder
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition.
2. Design & Fulfilled Structures:

- Pseudo Random Sequences Generator
- Scrambler
- Non Systematic Convolutional Coder
- Recursive Systematic Convolutional Coder
- Cyclic Redundancy Check Coder
- Cyclic Redundancy Check Decoder
- Error-Correcting Cyclic Coder
- Error-Correcting Cyclic Decoder
- Galois Field Generator
- Reed Solomon Coder/Decoder
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Design

1. Design & Definition.
2. Design & Fulfilled Structures:

- Pseudo Random Sequences Generator
- Scrambler
- Non Systematic Convolutional Coder
- Recursive Systematic Convolutional Coder
- Cyclic Redundancy Check Coder
- Cyclic Redundancy Check Decoder
- Error-Correcting Cyclic Coder
- Error-Correcting Cyclic Decoder
- Galois Field Generator
- Reed Solomon Coder/Decoder
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler

\[
\begin{align*}
\text{Data Flow} & \quad \text{Output - Scrambler} \\
X & \rightarrow + \quad + \quad + \\
& \quad -1 \quad -1 \quad -1 \\
Z & \quad Z & \quad Z \\
S_{r-1} & \quad S_{r-2} & \quad S_0 \\
& \quad a_1 \quad a_2 \quad a_r \\
& \quad \sum_{j=0}^{m=r} a_k Y_{(j-k)} \\
\end{align*}
\]

Pseudo Random Sequences Generator = Fibonacci LFSR

Generalized Equation:

\[
Y(j) = \sum_{k=0}^{m=r} a_k Y_{(j-k)}
\]

Equation of R-LFSR:

\[
Y_{(j)} = \sum_{k=0}^{m=r} a_{(j-k)} Y_{(j-k)}
\]

Pseudo Random Sequence with R-LFSR:

Reversing coefficients: \(a^{R\text{-LFSR}}_{(j)} = a_{\text{Fibonacci}}^{(j-k)} \) and Fitted Initial Values.
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler
2. Convolutional Coder: Non Systematic Coder (NSC)

Non Systematic Coder = FIR Filter

Equation: \[Y_n = \sum_{0}^{N} b_k \cdot X_{n-k} \]

Equation of R-LFSR (Transpose FIR Filter): \[Y_n = \sum_{0}^{N} b_{N-k} \cdot X_{n-k} \]

Pseudo Random Sequence with R-LFSR:

- Reversing coefficients: \[b_{R-LFSR}^{(j)} = b_{CTC-NSC}^{(j-k)} \]
A Reconfigurable \textbf{LFSR} for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler
2. Convolutional Coder : Recursive Systematic Coder (RSC)

Recursive Systematic Coder = IIR Filter

Equation: \[Y[n] = \sum_{k=0}^{N} b_k \cdot X[n-k] - \sum_{k=1}^{N} a_k \cdot Y[n-k] \]

Equation of R-LFSR (Transpose IIR Filter): \[Y[n] = \sum_{k=0}^{N} b_{N-k} \cdot X[n-k] - \sum_{k=1}^{N} a_{N-k} \cdot Y[n-k] \]

\textbf{Pseudo Random Sequence with R-LFSR:}

• Reversing coefficients: \[a^{R-LFSR}_{(j)} = a^{IIR-Filter}_{(j-k)}, \quad b^{R-LFSR}_{(j)} = b^{IIR-Filter}_{(j-k)} \]
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler
2. Convolutional Coder: NSC & RSC
3. Cyclic Redundancy Check: R-LFSR and Coding

Equation:
\[C(x) = x^{n-k} M(x) + \text{remainder} \left(\frac{x^{n-k} M(x)}{g(x)} \right) \]

Generation of the Remainder:
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler
2. Convolutional Coder: NSC & RSC
3. Cyclic Redundancy Check: R-LFSR and Coding

Equation:
\[C(x) = x^{n-k} M(x) + \text{remainder} \left(\frac{x^{n-k} M(x)}{g(x)} \right) \]

Generation of the Remainder:

\[M(x) \]

\[r_0 \rightarrow \bigoplus \rightarrow z^{-1} \rightarrow g_1 \rightarrow r_1 \rightarrow \bigoplus \rightarrow z^{-1} \rightarrow \bigoplus \rightarrow z^{-1} \rightarrow \bigoplus \rightarrow \]
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Parameterization

1. Pseudo Random Sequences Generator & Scrambler
2. Convolutional Coder: NSC & RSC
3. Cyclic Redundancy Check: R-LFSR and Decoding

Equation:
\[C(x) = x^{n-k} M(x) + \text{remainder} \left(\frac{x^{n-k} M(x)}{g(x)} \right) \]

Generation of the Syndrome:
II. The Reconfigurable Linear Feedback Shift Register: Implementation

 Shortest R-LFSR Structure (SRS)

 - Definition: «This architecture is the shortest R-LFSR structure with the Minimal number of registers required to replace in turn the whole 20 structures referenced in the standards»

 - Purpose: Suitable Duplication and Comparison with the Velcro Method
II. The Reconfigurable Linear Feedback Shift Register: Implementation

 Shortest R-LFSR Structure (SRS)
 - Definition: «This architecture is the shortest R-LFSR structure with the Minimal number of registers required to replace in turn the whole 20 structures referenced in the standards»
 - Purpose: Suitable Duplication and Comparison with the Velcro Method
II. The Reconfigurable Linear Feedback Shift Register: Implementation

 Shortest R-LFSR Structure (SRS)

 • Definition: « This architecture is the shortest R-LFSR structure with the Minimal number of registers required to replace in turn the whole 20 structures referenced in the standards »

 • Purpose: Suitable Duplication and Comparison with the Velcro Method

 • Constituent Elements: Subdivision

 Size of the Minimal Operator : 4
 Size of the most Restated Operator : 8

 Two Constituent Elements : R-LFSR4 and R-LFSR8
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Implementation

 Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
II. The Reconfigurable Linear Feedback Shift Register: Implementation

Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
II. The Reconfigurable Linear Feedback Shift Register: Implementation

Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
II. The Reconfigurable Linear Feedback Shift Register: Implementation

Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Implementation

Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
II. The Reconfigurable Linear Feedback Shift Register: Implementation

Shortest R-LFSR Structure (SRS): Constituent Elements - Subdivision
II. The Reconfigurable Linear Feedback Shift Register: Implementation

2. Common Operators Approach: Results of Implementation
 1. Software Defined Radio Terminal
 • Tri-Standard: IEEE 802.11g, IEEE 802.16-2005 (WiMax), 3GPP LTE
 2. Structures to Replace:
 • 24 different, which 20 feature different designs

<table>
<thead>
<tr>
<th>Class of Functions</th>
<th>Polynomial Degrees</th>
<th>Numbers of Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrambler/Descrambler</td>
<td>7 - 11 - 15 - 22</td>
<td>6</td>
</tr>
<tr>
<td>CRC Coder/Decoder</td>
<td>8 - 12 - 16 - 24 - 32</td>
<td>14</td>
</tr>
<tr>
<td>Convolutional Coder/Turbo Coder</td>
<td>2x4 - 2x6 - 2x9 - 3x8</td>
<td>4</td>
</tr>
</tbody>
</table>
A Reconfigurable LFSR for SDR Terminal.

II. The Reconfigurable Linear Feedback Shift Register: Implementation

2. Common Operators Approach: Results of Implementation

3. Results:

Tools of Implementation: ALTERA/Cyclone II with Quartus synthesis

Comparison:
- Velcro Method and ONE SRS:
 - Velcro Method: 100%
 - R-LFSR4: 14%
 - R-LFSR8: 12%

Comparison:
- Velcro Method and Duplication of SRS:
 - Velcro Method: 100%
 - R-LFSR4: 95%
 - R-LFSR8: 83%
A Reconfigurable LFSR for SDR Terminal.

Conclusion
- We propose a practical view of the Common Operators Approach.
- We design a Common Architecture to carry out:
 - Pseudo Random Sequences Generator
 - Scrambler
 - Convolutional Coder: NSC ans RSC
 - CRC Coder/Decoder
 - Galois Filed Generator
 - Reed Solomon Coder/Decoder

Comparison with Velcro Method:
- We create scalable and « time-tested » Operators.
- The Common Operator Approach with Shortest R-LFR8 Structure as a Common Operator give a first save of space of 17%
- The SRS is oversized for many operations to substitute, the implementation is not the most optimized one.

Standard 3:
Conclusion

In future articles, we will present:

- An optimized R-LFSR4/8 structure to map all the operations required by each standard.

Standard 1:

- Three other architectures and associated operators dedicated to specific functional perimeters.
- The evaluation of operators with unspecified functional perimeter.
- The comparison between Common Operator and Common Function approach.