Optimal Determination of Common Operators for Multi-Standard Software Defined Radio

4th Karlsruhe Workshop on Software Radios
Karlsruhe, Germany

C. Moy J. Palicot Virgilio RODRIGUEZ D. Giri

SCEE Group, IETR/Supélec
Cesson-Sevigné, France
email: vr@ieee.org

23 March, 2006
1. Overview
2. Mathematical framework
3. Architecture optimisation
4. Discussion / Outlook
Problem statement

- The optimal design of a multistandard reconfigurable radio is the right **choice** between two extremes:
 - **One extreme**: the “Velcro” solution (one self-contained complex module for each supported standard)
 - **Other extreme**: install only the most “primitive” components (adders, multipliers, etc), and provide "higher level" functionality through multiple calls

- **Trade-off:**
 - Velcro architecture generally provides best performance, but at **highest manufacturing cost** (and size/weight)
 - Other extreme likely minimises cost (& size/weight) but at **unacceptable performance** (multiple calls add latency!)

- **Our approach**: build a mathematical framework to find the optimum between these extremes
Overview

- We model the reconfigurable radio as a (hyper)graph of progressively simpler functional modules.
- The functionality of a given module can be provided in 2 ways:
 - installing a dedicated component optimised for that task
 - invoking (repetitively) lower level modules
- With each module we associate 2 “costs”: monetary and computational (delay).
- When a lower-level module is needed several times it is invoked multiple times (not physically replicated).
- The cost of a design is a weighted sum of the totals of both costs.
- To find the optimum, we use: (1) exhaustive search & (2) simulated annealing.
A graph for a tri-standard radio

Standard S1

A1

B1

C1

Standard S2

A2

B2

C2

Standard S3

A3

A4

A5

B3

B4
A realistic “sub-design” example

- Want an architecture to support 3 main functional modules: OFDM, Equalisation, and Multichannel processing
- Presumably these modules are part of a grander design
- Equalisation (to compensate for multipath) can be implemented via
 - FIR filtering
 - FFT (great for channels with long impulse responses)
- Multichannel refers to channelisation function of BS (needs to process many channels in parallel). Two options:
 - “Classical” channel per channel
 - Filter bank channeliser (which can be implemented via FFT)
Performing the optimisation

- Key question: should we install a self-contained/dedicated component to perform a given functionality, or should we invoke lower level modules/components?
- Each component is characterised by 2 “costs”: monetary, and “computational” (time)
- When a lower-level module is needed several times it is invoked multiple times (not physically replicated)
- Choose components to minimise a weighted sum of total monetary plus total computational costs
- Algorithms:
 - Exhaustive search (“brute force”)
 - Simulated annealing
Sub-graph with some parameters
Results

- Results are heavily influenced by chosen weights (monetary vs. computational)
 - when “delay” costs weigh heavily, complex, expensive but high-performing dedicated components are chosen
 - when “delay” costs weigh less, simpler, reusable components are chosen (leading to a less expensive design but with higher latency)

- Above agrees with intuition
An optimal design
We presented a mathematical framework to find an optimal architecture for a multistandard reconfigurable radio.

Key: graph of progressively simpler functional modules, showing their interdependencies (AND, OR).

Key question: install (specialised component) or invoke (lower levels)?

Choose components to minimise weighted sum of 2 “costs”: money and delay.

A realistic “sub-design” has been solved both by “brute force” and by simulated annealing.

Results are highly influenced by weights, and are intuitive.
Immediate Future (in progress)

- Re-building the hypergraph of design choices. Researchers seek:
 - new operators that may be common to several communication blocks
 - to replace time-domain with new frequency-domain algorithms (which would add arcs pointing to FFT)
 - to include more communication standards in the graph, and track their evolution

- Change objective function to minimise (monetary) cost only, subject to delay constraints (“deadlines”)

- Transform the architecture optimisation into a “network design problem” (to access extensive literature with many algorithms and results)
In the more distant horizon

Consideration of:

- multiple instances of same component (butterfly, FFT, etc) to reflect real market choices
- time needed to re-configure the radio while switching standards
- “travel time” of signals from a component to another
- possible contention among high level modules for the service of the same lower-level module (which may be critical if the SDR needs to support simultaneous operation over several standards)
A glance into the future: graph/network
A glance into the future: graph/network