Managing Dynamic Partial Reconfiguration on Embedded SDR Platforms

Christophe MOY
Associate Professor at Supélec

Authors:
Jean-Philippe Delahaye
Christophe Moy
Pierre Leray
Jacques Palicot

SUPELEC - Campus de Rennes - FRANCE
SCEE team – Signal, Communication and Embedded Systems

IETR – UMR 6164
Institute of Electronics and Telecommunications of Rennes
• Configuration management
• Multi-standards processing architecture
• SDR platform architecture
• FPGA partial reconfiguration
• Conclusion
• Configuration management

• Multi-standards processing architecture

• SDR platform architecture

• FPGA partial reconfiguration

• Conclusion
• SDR multi-standard terminal architecture

Classical approach:
Multiple architecture for multiple standards

Terminal with duplicated HW for each standard

Software-Defined Radio approach:
Single architecture for multiple standards

Terminal with a common configurable computing architecture for all standards
• Our view of configuration management PHY

 – Goals
 – adapt signal processing functionality to the radio application needs
 – perform reconfiguration over heterogeneous computing resources
 – control the reconfiguration process
 – Constraint
 – run-time reconfiguration requirements
- Configuration management units (CMU): distributed over processing blocks

- Different kinds of CMU
 - processing nature
 - underlying hardware
 - depth of reconfiguration
• Expected scenarios
 – standard changing
 – mode changing
 – service changing
 – performance enhancement
 – bug fixing
• Identified constraints for SDR
 – distributed management
 – multi-granularity issue
 – in function of the HW support

L1_CM :
 – Global manager
 – Standard parameter control
 – Dispatches orders to lower layers

L2_CMUs :
 – Function Level
 – Independent of the HW
 – Manages several elementary PB-processing blocks of lower granul.

L3_CMUs :
 – Processing blocks configuration
 – Embedded very closely to the PB
 – Dedicated to the nature of reconfigurable resources
- Configuration management
- Multi-standards processing architecture
- SDR platform architecture
- FPGA partial reconfiguration
- Conclusion
• Baseband transmitter chain
 – GSM (Voice, mono carrier)
 – UMTS (Data, High Mobility, CDMA)
 – 802.11g OFDM Mode (High Data rate, multi-carrier)
• Classification of processing functions in 3 classes
 – depending on processing nature

 - Data Structuring Class
 - Memory Intensive
 - Coding Class
 - Flexibility Intensive
 - Modulation Class
 - Computation Intensive

 – deduction of the mapping on 3 clusters HW resources
• Distributed processing
• Heterogeneous processing devices
 – depending on processing nature
 – 3 clusters of HW resources
• Different architecture granularities have to be considered
 – depending on processor and processing nature
 → Very close to configuration management considerations
 → Both can easily be merged in the global SDR system design
- Configuration management
- Multi-standards processing architecture
- SDR platform architecture
- FPGA partial reconfiguration
- Conclusion
• Combine both
 – reconfiguration management - hierarchical
 – data processing - distributed

Configuration management

- L1_CM
 Standard Set

- L2_CMU
 Function Set

- L3_CMU
 Block Set

SDR Processing

- Coding PC
- Data Structuring PC
- Modulation PC

Processing cluster level

- Processing Function level (independent of the HW)
- Processing Blocks level (deployed on the HW)
Hierarchical approach for SDR system Design

- **L1_CM**
 - Standards Parameters Lib.
 - µP

- **L2 CMUs**
 - µP
 - Program Mem.

- **L3 CMUs**
 - µP
 - Cop1
 - DSP
 - Data Mem.

- **Array of BlockRAM**
 - µP
 - DMA
 - Data Structuring Cluster

- **L3 CMUs**
 - µP
 - Core Lib.

- **HW Acc1**
 - DSP
 - Data Mem.

- **Modulation Cluster**
• HW platform composed of 3 processing units
• Heterogeneous processing units

GPP+Memory : host PC
FPGA : Xilinx Virtex II
DSP : TI C64
- Configuration management
- Multi-standards processing architecture
- SDR platform architecture
- FPGA partial reconfiguration
- Conclusion
• Partial reconfiguration
 – save reconfiguration time
 – save bandwidth for OTAR by downloading

• FPGA context
 – dissuasive time of total reconfiguration for large FPGA (~100 ms per million gates - Virtex)
 – memory limitations to store total bitstreams
 – control resource savings
 • a plurality of successive designs instead of heavy control state machines
 – permits to modify the structure of a design
• Common operator approach
 – parameters change the operator functionality
 – managed at the L3_CMU level
• FPGA fixed area for management contents
 – Processor CORE (µBlaze/PPC for Xilinx)
 – operators
 – dedicated state machines
• FGPA dynamically reconfigurable area
 – operators parameters (managed by L3_CMU)
 – intra-operator routing (managed by L3_CMU)
 – inter-operator data flow changes (m.b. L2_CMU)
• Module-based design flow on Virtex II devices

• Multi-objects in large FPGAs
• DSP device
 – downloads bitstreams
 – through SelectMap interface
• SRAM
 – bitstream storage
• Configuration management
 – external L2_CMU on DSP
 – L3_CMU wired in the FPGA within or close to operators
• µBlaze
 – Read/write bitstreams
 – into ICAP

• Boot loader
 – if no DSP
 – initial config.
 – instanciates ICAP, µBlaze

• Configuration management
 – internal L2_CMU: µBlaze embedded in the FPGA
 – flexible L3_CMU: µBlaze embedded in the FPGA
 – or/and L3_CMU wired in the FPGA within operators
• Configuration management
• Multi-standards processing architecture
• SDR platform architecture
• FPGA partial reconfiguration
• Conclusion
• Multi-level granularity needs for reconfiguration of SDR have been identified
• Hierarchical configuration management to optimize reconfiguration is proposed
• Multi-standard functional architecture model
• Deduction of an SDR architecture applicable to any hardware platform
• Support any partial reconfiguration of the SDR processing chain
• Illustrated by a FPGA partial reconfiguration implementation
Thank you for your attention