
師団
SIDAN

Software Instrumentation for the
Detection of Attacks on Non-control-data

Jonathan-Christofer Demay, Éric Totel and Frédéric Tronel
SUPELEC, Rennes, France, first_name.last_name@supelec.fr

http://www.rennes.supelec.fr/ren/rd/ssir/outils/sidan/

An Integrated Software Instrumentation Process

Our work focuses on the detection of non-control-data attacks by checking for
variable corruptions that may lead to an illegal system call executed by a valid
code (i.e. not injected). Since those attacks need to corrupt specific data with
specific values, they may put the memory of the process in an inconsistent state.
Our approach consists in discovering consistency properties in a program through
static analysis in order to detect data corruptions induced by non-control-data

attacks. We thus build a data-consistency-oriented model based on these prop-
erties and use it to instrument the program to detect such attacks at runtime.
We have developed a prototype based on Frama-C that computes this normal
behavior model and inserts executable assertions derived from this model. The
resulting tool is a source to source translator that integrates itself in the building
process and transforms untrusted programs into data security checking programs.

Instrumenter Compiler

Analyzer

Source Code Instrumented
Source Code

Instrumented
Program

SIDAN

Frama-C

Intrusion Sensitive Data Set

To detect data inconsistencies induced by a non-control-data attack, our approach
have to consider the set of variables a system call depends on. We did choose to
use the Frama-C ’s plugin Program Dependence Graph to determine such a set.

Data Constraints Discovery

To detect inconsistencies on a set of data, our approach needs to discover con-
straints on the paths that lead to the corresponding system call where the data
are accessible. We use the Value Analysis feature of Frama-C to compute them.

Source Sample

packet_start (SSH_SMSG_AUTH_NEEDED) ;
packet_send () ;
int auth_ok = 0 ;
i f (passwd != NULL)

while (auth_ok != 1){
type = packet_read (data) ;
switch (type){

. . .
case SSH_CMSG_AUTH:

auth_ok = auth (passwd , data) ;
break ;

default :
l og (UNKNOWN_MESSAGE, type) ;
break ;

}}
l og (AUTH_SUCCESSFUL, user) ;
authent i ca t ed (uid) ;

Program Slice

int auth_ok = 0 ;
i f (passwd != NULL)

while (auth_ok != 1){
type = packet_read (data) ;
switch (type){

. . .
case SSH_CMSG_AUTH:

auth_ok = auth (passwd , data) ;
break ;

}}

authent i ca ted (uid) ; //point of interest

Variation Domain

auth_ok passwd type data uid

{0} #UNDEF #UNDEF #UNDEF #UNDEF
{0} { !NULL} #UNDEF #UNDEF #UNDEF
{0} { !NULL} #UNDEF #UNDEF #UNDEF
{0} { !NULL} #UNDEF #UNDEF #UNDEF
. . .

{0} { !NULL} {SSH_CMSG_AUTH} #UNDEF #UNDEF
{0 ,1} { !NULL} {SSH_CMSG_AUTH} #UNDEF #UNDEF

(auth_ok , type) in {({0} ,#UNDEF) , ({1} ,{SSH_CMSG_AUTH})}

SIDAN Results

We have implemented our approach as a Frama-C ’s plugin and have tested it on
a vulnerable version of OpenSSH. The instrumentation process covers 8% of the

function calls. The program now runs with a runtime overhead of about 0.5% and
the two known non-control-data attacks exploiting this vulnerability are detected.

Attack

int auth_ok = 0 ;
i f (passwd != NULL)

while (auth_ok != 1){
/∗ an integer overflow in packet_read impacts a

boundary check thus allowing malicious users
to remotely overwrite at arbitrary locations
data such as auth_ok or passwd to bypass the
authentication mechanism ∗/

type = packet_read (data) ;
switch (type){

. . .
case SSH_CMSG_AUTH:

auth_ok = auth_passwd (passwd , data) ;
break ;

}
}

authent i ca t ed (uid) ;

Detection

int auth_ok = 0 ;
i f (passwd != NULL)

while (auth_ok != 1){
type = packet_read (data) ;
switch (type){

. . .
case SSH_CMSG_AUTH:

/∗ check passwd according to
the point of execution ∗/

a s s e r t (passwd != NULL) ;
auth_ok = auth_passwd (passwd , data) ;
break ;

}
}

/∗ check auth_ok according the type of the last message ∗/
a s s e r t ((auth_ok == 1 && type = SSH_CMSG_AUTH) | | auth_ok == 0) ;
authent i ca t ed (uid) ;

